位置:成果数据库 > 期刊 > 期刊详情页
LOCALLY STABILIZED FINITE ELEMENT METHOD FOR STOKES PROBLEM WITH NONLINEAR SLIP BOUNDARY CONDITIONS
  • ISSN号:0254-9409
  • 期刊名称:《计算数学:英文版》
  • 时间:0
  • 分类:O241.82[理学—计算数学;理学—数学] TU311[建筑科学—结构工程]
  • 作者机构:[1]College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China School of Science, Xi'an Jiaotong University, Xi'an 710049, China, [2]School of Science, Xi'an Jiaotong University, Xi'an 710049, China
  • 相关基金:Acknowledgments. The authors would like to thank the reviewers for their valuable comments and suggestions. The work of the first author is supported by the National Natural Science Foundation of China (10901122) and by Zhejiang Provincial Natural Science Foundation (Y6090108). The work of the second author is supported by the National Natural Science Foundation of China (10971165).
中文摘要:

基于低顺序的一致有限元素 subspace ( V [ h ], M [ h ])例如 P [ 1 ]-P[0]三角元素或 Q [ 1 ]-P[0]四边的元素,为Stokes 问题与的局部地稳定的有限元素方法非线性滑动边界条件在这份报纸被调查。为这个班非线性包括 subdifferential 性质滑动边界条件,与 Stokes 问题联系的弱变化明确的表达是变化不平等。自从(V [h ] , M [h ]) 不满足分离 inf 啜条件,一个宏元素条件为构造局部地稳定的明确的表达被介绍以便稳定性(V [h ] , M [h ]) 被建立。在这些条件下面,我们获得 H [1 ] 并且 L [2 ] 为数字答案的错误估计。[从作者抽象]

英文摘要:

Based on the low-order conforming finite element subspace (Vh, Mh) such as the P1-P0 triangle element or the Q1-P0 quadrilateral element, the locally stabilized finite element method for the Stokes problem with nonlinear slip boundary conditions is investigated in this paper. For this class of nonlinear slip boundary conditions including the subdifferential property, the weak variational formulation associated with the Stokes problem is an variational inequality. Since (Vh, Mh) does not satisfy the discrete inf-sup conditions, a macroelement condition is introduced for constructing the locally stabilized formulation such that the stability of (Vh, Mh) is established. Under these conditions, we obtain the H1 and L2 error estimates for the numerical solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算数学:英文版》
  • 主管单位:
  • 主办单位:中国科学院数学与系统科学研究院
  • 主编:
  • 地址:北京2719信箱
  • 邮编:100080
  • 邮箱:
  • 电话:
  • 国际标准刊号:ISSN:0254-9409
  • 国内统一刊号:ISSN:11-2126/O1
  • 邮发代号:
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库
  • 被引量:193