本文回顾了李剑等针对Stokes和Navier-Stokes方程提出的一种新稳定化有限元方法,该方法采用局部高斯积分残差技术,适用于最低阶等阶(双)线性有限元对.对于等价双线性元对,给出了求解Stokes和Navier-Stokes方程的一些数值算例,验证了理论分析的正确性.
In this paper,we recall a new stabilized finite element method proposed by Li J et al,which is based on two local Gauss integral technique for Stokes and Navier-Stokes equations approximated by the lowest equal-order(bi) linear finite element pairs,and give some numerical examples of Stokes equations and Navier-Stokes equations for the bilinear finite elements.The experiment performs and agrees with the theoretical analysis well.