研究了第二类Fe igenbaum函数方程的推广形式:{f(φ(x))=φ(φ(f(x))),φ(0)=1,0≤φ(x)≤1,x∈[0,1],其中f(x)为[0,1]上的单调递增连续函数,且满足f(0)=0,f(x)
This paper studies a generalization for the second type of Feigenbaum's functional equations,f(φ(x))=φ(φ(f(x))),φ(0)=1,0≤φ(x)≤1, x∈,where f(x) is an increasing continuous function on and satisfies f(0)=0,f(x)x,(x∈(0,1]).Using a new constructive method,the existence and uniqueness of single-valley continuous solutions are discussed.