采用室内培养试验,研究在相同的土壤水分和施氮量条件下,不同碳源(玉米秸秆及其黑炭)添加对土壤无机氮转化和N2O排放的影响机制。结果表明,不同碳源(玉米秸秆和黑炭)的施加对氮素净矿化量的影响差异极显著(p 〈 0.01)。与直接施加玉米秸秆相比,施加黑炭增加了土壤硝态氮和铵态氮的含量,显著降低了土壤N2O排放量;施加黑炭后土壤无机氮浓度变化在整个培养期间较平缓,而施加秸秆后土壤氮转化在前两周较为剧烈。相较于添加秸秆,施加黑炭有利于减少温室气体N2O的排放。
Applying biochar to soils may cause a win–win situation resulting in C sequestration and improvement of soil fertility and soil physical quality, depending on soil moisture condition, soil temperature and soil C/N ratio. An in-lab incubation experiment, laid out in quadratic general spinning design, was conducted to investigate effects of application of maize stalk and biochar made from maize stalk on N transformation in and N2O emission from Loessal soil. Results show that in the soil applied with maize stalk, net nitrogen mineralization was influenced mainly by content of organic carbon, and then by contents of water and nitrogen, but in the soil applied with biochar, it was mainly by content of nitrogen and then by contents of water and organic carbon. The difference between the two carbon sources in effect on net N mineralization was extremely significant (p〈0.01). Compared with maize stalk, biochar increased soil NO3?-N and NH4+-N concentrations, and significantly decreased N2O emission. In the soil applied with biochar, the concentration of inorganic nitrogen changed slowly during the entire incubation period, while in the soil applied with maize stalk, it did drastically in the first two weeks of the incubation. Hence, it is obvious that application of biochar is conducive to reduction of emission of the greenhouse gas, N2O.