开展了Mach数为1.23和1.41的冲击波作用下的Air/SF6斜界面不稳定性激波管实验,并利用王涛等人发展的可压缩多介质粘性流体和湍流大涡模拟程序MVFT(multi—viscous—fluidandturbulence),对该激波管实验进行了数值模拟,二者相比较一致性较好,包括界面图像、湍流混合区TMZ(turbulent mixingzone)宽度、气泡和尖钉位移,确认了该计算代码对界面不稳定性问题模拟的可靠性和有效性.数值模拟再现了冲击波作用下,Air/SF6斜界面的演化过程及流动中复杂波系结构的发展如冲击波的传播、折射和反射.结果还显示冲击波Mach数较大时,冲击波和界面相互作用时混合区获得的能量也较大,扰动界面发展的也更快.
Shock tube experiments of inclined Air/SF6 interface instability under shock wave with mach numbers 1.23 and 1.41 were conducted, and were numerically simulated by the parallel algorithm and code MVFT (multi-viscous-fluid and turbulence) of large-eddy simulation (LES). The developing process of interface accelerated by shock wave was reproduced by sim- ulations, the complex waves structure, e.g. the propagation, refraction and reflection of shock wave were revealed clearly in flows. The simulated evolving images of interface are consistent with experimental ones. The simulated width of turbulent mixing zone (TMZ), the displacements of bubble and spike also agree well with the experimental data. And the reliability and effectiveness of MVFT to simulate this problem of interface instability are validated. The more energy is injected into the TMZ when the shock wave has a larger mach number, the perturbed interface is developing faster.