利用锥上的不动点指数理论以及平移变换的方法,研究了一类四阶半正奇异Strurm-Liouville边值问题{1/ p(t)(p(t)u^′′′(t))'= λf(t,u) +g(t,u), u(0) = u(1) = 0,αu ″(0) -β t→0^+limp(t)u^m′′′(t) =0, γu″(1) +δlimp(t)u^′′′(t) =0.}在没有非负假设的情况下得出了上述问题C^2[0,1]∩C^4(0,1)正解存在的一个新结果.
By means of fixed point index theorem on cone and combining method of varying in translation, we study a class of semipositive singular fourth-order Strurm-Liouville boundary value problem {1/ p(t)(p(t)u^′′′(t))'= λf(t,u) +g(t,u), u(0) = u(1) = 0,αu ″(0) -β t→0^+limp(t)u^m′′′(t) =0, γu″(1) +δlimp(t)u^′′′(t) =0.}A suffcient condition for the existence of C^2 [ 0, 1 ] ∩ C ^4(0,1) positive solutions is established without any nonnegative assumption.