位置:成果数据库 > 期刊 > 期刊详情页
基于机器学习的中文微博情感分类实证研究
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:1-4
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京航空航天大学经济管理学院,北京100191
  • 相关基金:国家自然科学基金(No.90924020);教育部博士点基金(No.200800060005).
  • 相关项目:面向非常规突发事件预警的Web信息流监控和传播研究
作者: 刘志明|刘鲁|
中文摘要:

使用三种机器学习算法、三种特征选取算法以及三种特征项权重计算方法对微博进行了情感分类的实证研究。实验结果表明,针对不同的特征权重计算方法,支持向量机(SVM)和贝叶斯分类算法(NaIve Bayes)各有优势,信息增益(IG)特征选取方法相比于其他的方法效果明显要好。综合考虑三种因素,采用SVM和IG,以及TF-IDF(Term Frequency-Inverse Document Frequency)作为特征项权重,三者结合对微博的情感分类效果最好。针对电影领域,比较了微博评论和普通评论之间分类模型的通用性,实验结果表明情感分类性能依赖于评论的风格。

英文摘要:

With the development of microblog, it is more convenient to comment on the Web. Up to now, there are very few studies on the sentiment classification for Chinese microblog, therefore this paper uses three machine learning algorithms, three kinds of feature selection methods and three feature weight methods to study the sentiment classification for Chinese microblog. The experimental results indicate that the performance of SVM is best in three machine learning algorithms, IG is the better feature selection method compared to the other methods, and TF-IDF is best fit for the sentiment classification in Chinese microblog. Combining the three factors the conclusion can be drawn that the performance of combination of SVM, IG and TF-IDF is best. For the movie domain it is found that the sentiment classification depends on the review style.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887