Molecularly thin water layer, with a hydrogen bonding network different from those in bulk water and ice, has unique properties and is generally involved in many important processes such as wetting, erosion, atmosphere chemical reaction, protein folding and biomolecular interaction. Here, we report a new water layer structure at room temperature, which is found inside nanobubbles by using synchrotron based scanning transmission soft X-ray microscopy(STXM). The three peaks 535.0, 536.8 and 540.9 e V at O K edge inside the nanobubbles show a novel characteristics of very thin water layers, which has never been observed before.
Molecularly thin water layer, with a hydrogen bonding network different from those in bulk water and ice, has unique properties and is generally involved in many important processes such as wetting, erosion, atmosphere chemical reaction, protein folding and biomolecular interaction. Here, we report a new water layer structure at room temperature, which is found inside nanobubbles by using synchrotron based scanning transmission soft X-ray microscopy(STXM). The three peaks 535.0, 536.8 and 540.9 e V at O K edge inside the nanobubbles show a novel characteristics of very thin water layers, which has never been observed before.