通过化学预处理和机械处理的方法制备出甲壳素纳米纤维,再利用真空抽滤的方法制备出甲壳素纳米纤维膜,将所得的纳米纤维素浸渍到聚醚砜树脂中,制备了甲壳素纳米纤维/聚醚砜复合薄膜。采用场发射扫描电镜(FE—SEM)对机械处理的甲壳素纳米纤维的形态特征进行表征。采用紫外光分光光度计、热机械分析仪(TMA)分别对甲壳素纳米纤维/聚醚砜复合膜的透光性、热膨胀性做分析。用万能力学试验机测试甲壳素纳米纤维/聚醚砜复合膜的拉伸性能。结果表明,机械处理后,甲壳素纤维达到纳米级别。随机械处理手段增加。甲壳素纳米纤维直径逐步变小。甲壳素纳米纤维/聚醚砜复合薄膜保持了较高的透光率,对比树脂材料。热稳定性和力学强度明显增强,是一种具有高透光性、低热膨胀性的复合膜,在光学基底材料、显示器等方面具有较大的应用潜力。
Chitin nanofibers were prepared by chemical pretreatment and mechanical treatments. The obtained nanofiber solution formed films through vacuum filtration, and then they were impregnated into polyether sulfone (PES) resin to prepare the chitin nanofibers/PES composite films. The morphology of the nanofibers was characterized by field emission electron microscopy (FE-SEM). The light transmittance and thermal expansion properties of the chitin nanofiber/PES composite film were investigated by UV-visible spectrometer and thermomechanical analysis. The tension properties of the chitin nanofiber/PES composite film were tested by a universal materials mechanical testing machine. The results showed that the diameter of the chitin fibers reached the nanometer level, and with the combination of the mechanical processing method, the diameter of the chitin nanofibers gradually decreased. Chitin nanofiber composite films maintained high light transmittance, and compared with the resin matrix, their thermal stability and mechanical strength were apparently enhanced. Chitin nanofiber composite films possess high light transmittance and low thermal expansion, which have potential applications in optical substrates and displayers.