研究了向量值Hardy-Littlewood算子在加权Herz-Money空间及加权弱Herz-Money空间上的有界性,应用这些结果,得到了一大类定义在R^n上的次线性算子向量值不等式.
In this paper, we investigate the boundedness of vector-valued Hardy-littlewood operator on the weighted Herz-Morrey space and weak weighted Herz-Morrey space. Moreover, as an application of our resule, we obtain a wide class of vector-valued ineaualities of sublinear operators defined on R^n.