传统的推荐系统只使用用户的评分信息进行计算并进行推荐,虽然在一定程度上能够获得用户或资源的隐含特征,但缺乏足够的语义解释,影响了推荐效果.针对此问题,提出了一种融合社会标签的近邻感知的联合概率矩阵分解推荐算法.首先,该算法通过标签的相似性来计算用户间和资源之间的相似性,进行近邻选择;其次,构建用户—资源评分矩阵、用户—标签标注矩阵、资源—标签关联矩阵并运用联合概率矩阵分解方法计算3个矩阵的隐含特征向量,通过对训练模型进行参数优化,为用户进行推荐.实验结果表明,该算法可以有效利用标签的语义性,提高推荐质量.