支持向量机学习算法的本质是从训练集中寻找支持向量,因此能否通过训练算法能快速找出支持向量是衡量支持向量机算法优劣的重要标准。本文提出了一种新的快速训练支持向量机的增量学习算法,首先,给出边界向量的定义,然后,对一个给定的新加入的样本,新的学习方法验证其是否为边界向量,如果是,将其加入到训练集中重新训练支持向量机,如果不是,就舍弃,这样能达到减少训练样本、降低训练复杂性目的,最后,给出了一个增量学习算法。实验表明测试误差和支持向量数量与SMO算法大致相当,而训练速度明显加快。