位置:成果数据库 > 期刊 > 期刊详情页
基于多维航迹特征的异常行为检测方法
  • ISSN号:1000-6893
  • 期刊名称:《航空学报》
  • 时间:0
  • 分类:V355.1[航空宇航科学与技术—人机与环境工程;航空宇航科学技术] TP274.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:海军航空工程学院信息融合研究所,烟台264001
  • 相关基金:国家自然科学基金(61531020,61471383,91538201); 山东省科技重大专项基金(2015ZDZX01001)
中文摘要:

在信息融合领域,利用数据挖掘中的异常检测技术,可以基于目标的多维航迹特征来挖掘目标的异常行为。现有轨迹异常检测方法主要检测目标的位置异常,没有充分利用目标的属性、类型、位置、速度和航向等多维特征,在挖掘目标的异常行为时具有局限性。通过定义多因素定向Hausdorff距离和构造多维度局部异常因子,提出了一种基于多维航迹特征的异常行为检测方法,通过对多维航迹数据的异常检测,实现对目标异常行为的挖掘。在仿真军事场景和真实的民用场景上进行了实验分析,所提方法都能有效的检测出目标的异常行为。

英文摘要:

In the information fusion domain, anomalous behaviors could be mined based on multidimensional trajectory characteristics by using the anomalous detection technique in data mining. Previous trajectory anomaly detection algorithms mainly detect the position anomalies, without making full use of the attribute, category, position, velocity, and course characteristics. In order to overcome this limitation, we define the multi-factor Hausdorff distance, construct the multidimensional local outlier factor, and propose a method for detecting anomalous behaviors based on multidimensional trajectory characteristics. The method can mine anomalous behaviors based on detecting multidimensional trajectories. We conducted experiments on simulated military scenario and real civilian scenario, the proposed method can effectively detect the anomalous behavior of the target.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《航空学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国航空学会
  • 主编:孙晓峰
  • 地址:北京海淀区学院路37号
  • 邮编:100083
  • 邮箱:hkxb@buaa.edu.cn
  • 电话:010-82317058 82318016
  • 国际标准刊号:ISSN:1000-6893
  • 国内统一刊号:ISSN:11-1929/V
  • 邮发代号:82-148
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24676