在这份报纸我们在场为充分分离的本地不连续的 Galerkin 算法到的错误估计在一种尺寸与 Dirichlet 边界状况解决线性传送对流散开方程。时间被第三份订单作为一般在合理时间空间的条件下面预付明确的全部的变化减少 Runge-Kutta 方法。在空间和时间的最佳的错误估计被精力技术的帮助获得,如果我们适当地设置了数字流动和中间的边界条件。[从作者抽象]
In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.