位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的混合气体红外光谱分析关键技术研究
  • ISSN号:1004-4213
  • 期刊名称:《光子学报》
  • 时间:0
  • 分类:TH744.4[机械工程—光学工程;机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]西安交通大学电气工程学院,西安710049, [2]空军工程大学理学院,西安710051
  • 相关基金:国家自然科学基金(60276037)资助
中文摘要:

为了解决海量混合气体光谱数据样本无法获取、混合气体组分气体特征吸收谱线重叠、混合气体组分浓度分布的随意性等问题,将支持向量机用于混合气体红外光谱分析中.提出了光谱数据样本特征选择、数据预处理、SVM校正模型参量优化及层次式混合气体光谱分析结构等关键技术.实验分析了上述4项关键技术对分析结果的影响.实验结果显示,采用关键技术的混合气体组分浓度分析的最大绝对误差为2.93%,最大平均绝对误差为0.73%.

英文摘要:

In order to solve the difficulties that mass mixture gas spectrum data samples cannot be actually obtain by mixture gas component characteristic absorption lines seriously overlap, component gas concentration distribution is optional, support vector machine was used in mixture gas infrared spectrum analysis. The spectrum data sample characteristic choice, the data pretreatment, and the SVM Calibration model parameter optimization and mixture gas spectral analysis structure based on level were summarized and proposed. The influence between analysis result and the above 4 key technologies was analyzed by the method of experimental. The experimental result shows that the mixture gas component concentration analysis based on the key technologies max absolute error is 2.93G; the mean absolute error is 0.73%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国光学学会 西安光机所
  • 主编:侯洵
  • 地址:西安市高新区新型工业园信息大道17号47分箱
  • 邮编:710119
  • 邮箱:photo@opt.cn
  • 电话:029-88887564
  • 国际标准刊号:ISSN:1004-4213
  • 国内统一刊号:ISSN:61-1235/O4
  • 邮发代号:52-105
  • 获奖情况:
  • 中文核心期刊,曾获中国光学学会先进期刊奖,中国科学院优秀期刊三等奖,陕西省国防期刊一等奖等
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:20700