位置:成果数据库 > 期刊 > 期刊详情页
基于SVM回归模型的混合气体组分种类光谱识别方法
  • ISSN号:1004-4213
  • 期刊名称:《光子学报》
  • 时间:0
  • 分类:TH744.4[机械工程—光学工程;机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]西安交通大学电气工程学院,西安710049, [2]空军工程大学理学院,西安710051, [3]空军工程大学工程学院,西安710038
  • 相关基金:国家自然科学基金(60276037.60772016)资助
中文摘要:

针对混合气体红外光谱分析中无法采用同一模型同时进行混合气体组分浓度的定量分析和组分种类的定性分析的问题,本文提出了基于SVM回归模型的混合气体组分种类光谱识别方法.通过详细推导,证明混合气体组分种类识别完全可以通过组分浓度分析的SVM回归模型来求解,混合气体组分种类识别是一种特殊的回归.实验结果显示,该方法的混合气体组分种类的正确识别率不小于92.5%.

英文摘要:

In view of that spectrum quantitative analysis of component concentration, and qualitative analysis of component recognition can not be carried out using the same model simultaneously during infrared spectrum analysis of the mixed gas,a method of mixed gas component infrared spectrum recognition based on SVM regression model is proposed. The detailed derivation proves that the component recognition of mixed gas can be solved by the SVM regression model of component concentration analysis, and the component recognition of mixed gas is one special regression. The experimental result shows that, the correct rate of component recognition is not less than 92.5%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国光学学会 西安光机所
  • 主编:侯洵
  • 地址:西安市高新区新型工业园信息大道17号47分箱
  • 邮编:710119
  • 邮箱:photo@opt.cn
  • 电话:029-88887564
  • 国际标准刊号:ISSN:1004-4213
  • 国内统一刊号:ISSN:61-1235/O4
  • 邮发代号:52-105
  • 获奖情况:
  • 中文核心期刊,曾获中国光学学会先进期刊奖,中国科学院优秀期刊三等奖,陕西省国防期刊一等奖等
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:20700