位置:成果数据库 > 期刊 > 期刊详情页
融合光流与特征点匹配的单目视觉里程计
  • ISSN号:1008-973X
  • 期刊名称:《浙江大学学报:工学版》
  • 时间:0
  • 分类:TN919[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]浙江大学信息与电子工程学系,浙江杭州310027, [2]浙江省综合信息网技术重点实验室,浙江杭州310027
  • 相关基金:国家自然科学基金资助项目(61071219).
中文摘要:

针对城市平坦路面准确实时定位的问题,提出将光流跟踪法与特征点匹配进行卡尔曼融合的单目视觉里程计方法.基于平面假设,利用光流跟踪法进行帧间小位移定位,同时利用传统的加速鲁棒特征点(SURF)进行帧间大位移匹配来矫正光流法结果.通过卡尔曼滤波更新机器人的位置和姿态.结果表明,融合算法克服了光流法定位精度差和特征点匹配法处理速度慢的缺点,突出了光流法实时性和特征点匹配定位准确性的优点,该方法能够提供较准确的实时定位输出,并对光照变化和路面纹理较少的情况有一定的鲁棒性.

英文摘要:

For the problem of real-time precise localization on the urban flat surface, a monocular vision odometry based on the Kalman fusion of optical flow and feature points matching has been proposed. Based on the assumption of flat plane, the method of optical flow tracking was applied for localization between two frames in small movement. Meanwhile, the traditional SURF feature points matching between two frames in long distance was applied for refining the output of the optical flow method. The position and posture of the robot was updated through Kalman filter. The results demonstrate that the fusion algorithm overcomes the shortcomings of poor positioning accuracy of the optical flow and the low processing speed of the feature matching method, highlighting the advantages of real-time performance of optical flow and high accuracy of the feature matching. illumination change and low road texture, The fusion producing a algorithm is robust to the circumstances such as good localization results in real-time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198