位置:成果数据库 > 期刊 > 期刊详情页
基于GPU的大规模人群疏散模拟
  • ISSN号:1001-3695
  • 期刊名称:计算机应用研究
  • 时间:0
  • 页码:1165-1168
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学计算机学院,成都610065
  • 相关基金:国家自然科学基金(No.60903118、No.60832011)
  • 相关项目:基于图形处理器的高性能计算
中文摘要:

SIFT特征匹配算法的原理在于生成特征点的SIFT特征向量,通过对特征向量之间的匹配来实现图像之间的匹配。SIFT特征是一种尺度不变的局部图像特征,阐述生成SIFT特征向量的具体过程,包含尺度空间构建、关键点的检测和精确定位、关键点方向向量的确定和最终SIFT特征描述子的形成等步骤,以及根据形成的特征描述子进行图像的匹配。根据实验结果得出SIFT算法可以有效准确地实现图像之间的匹配。

英文摘要:

The principle of SIFT feature matching algorithm is to generate SIFT feature vector of the characteristic points, through the matching of feature vector to realize the matching of the images. SIFT feature is a kind of local image characteristics which is invariant to image scale. Expounds the specific process of how SIFT feature vector is generated, including the building of the scale space, the detection of the key points and accurately positioning these points, determines the direction of the feature vector, and finally form the SIFT features vector and according to the vector to realize the image matching. According to the experimental results it is concluded that SIFT algorithm can effectively and accurately realize the matching of images.

同期刊论文项目
期刊论文 101 会议论文 21 专利 5
期刊论文 25 会议论文 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049