位置:成果数据库 > 期刊 > 期刊详情页
基于多动态核聚类的间歇过程在线监控
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]辽宁工业大学电子与信息工程学院,辽宁锦州121001
  • 相关基金:国家自然科学基金项目(61272214);辽宁工业大学青年基金项目(X201315).
中文摘要:

针对传统的多元统计监测方法不能有效检测工业过程中由于初始条件波动较大所引发的弱故障问题,提出一种基于多动态核聚类的核主元分析(DKCPCA)监控策略,实现多阶段间歇过程的弱故障在线监控。该方法首先针对过程中各阶段每一批次数据结合自回归移动平均时间序列模型(ARMAX)和核主成分分析(KPCA)方法分别建立动态核PCA模型,然后根据各批次模型间载荷的相似性采用分层次聚类方法进行聚类,最后将聚在一起的批次数据进行展开重新再建立动态核PCA模型,随着聚类数目的不同从而建立多个类模型。当在线应用时给出了多模型选择策略,以提高监测精度。将此方法应用于青霉素发酵过程的监控中,监测结果表明此方法取得了比DKPCA和MKPCA更好的监测性能。

英文摘要:

Since weak faults induced by large fluctuations under poor initial conditions could not be effectively detected by traditional multivariate statistical monitoring methods, a novel kernel principal component analysis monitoring strategy based on multiple dynamic kernel clustering (DKCPCA) was proposed to improve weak faults detection performance for multi-stage batch processes. The proposed method firstly combined auto-regressive moving average exogenous time series model and kernel principal component analysis (KPCA). The dynamic kemel PCA model was built for each batch in each stage. Then hierarchical clustering was implemented through load matrix similarity among batch models. Finally, the batch data belonging to the same cluster were unfolded to build dynamic kernel PCA model again. The multiple models were established along with different cluster numbers. When online monitoring, multiple model selection strategy was given to improve monitoring precision. The monitoring method was applied to fault detection for benchmark of fed-batch penicillin production. The monitoring results showed that the proposed method had better performance than DKPCA and MKPCA.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185