位置:成果数据库 > 期刊 > 期刊详情页
中心向量夹角间隔正则化核向量机
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]河北大学数学与信息科学学院,河北保定071002
  • 相关基金:国家自然科学基金项目(61170040);河北省自然科学基金项目(F2015201185,F2013201220)
中文摘要:

针对大数据集如何有效地进行训练的问题,基于最大向量夹角间隔分类器(maximum vector-angular margin classifier,MAMC),提出了求解最优向量d的不同方法来得到中心向量夹角间隔分类器(central vector-angular margin classifier, CAMC),进而证明了 CAMC 等价于最小包围球问题(minimum enclosed ball, MEB)。但是鉴于 MEB 对参数的敏感性,又提出了正则化核向量机(regularized core vector machine,RCVM),将CAMC与RCVM结合得到中心向量夹角间隔正则化核向量机(regularized core vector machine with central vector-angular margin,CAM-CVM)。基于基准数据集的实验表明,CAMC具有更好的分类性能且CAMCVM可以有效快速地训练大规模数据集。

英文摘要:

For effective training on large datasets,we propose an alternate method to find the optimal vector,d, using the central vector-angular margin classifier (CAMC),which is based on the maximum vector-angular margin classifier.The CAMC can be considered to be equivalent to the corresponding minimum enclosing ball (MEB)problem.However,we have found that the MEB is very sensitive to the selection of the trade-off pa-rameter,so we propose using a regularized core vector machine (RCVM).By connecting the CAMC to the RCVM,we obtain a central vector-angular margin regularized core vector machine (CAMCVM).Experimen-tal results from the UCI datasets show that the CAMC has a better generalized performance,while the CAM-CVM can be used for effective training on large datasets.

同期刊论文项目
期刊论文 77 会议论文 17 著作 2
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960