欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Potentialfunction estimates for quasi-Einstein metrics
ISSN号:0022-1236
期刊名称:Journal of Functional Analysis
时间:2014
页码:1986-2004
相关项目:曲率流及相关几何问题研究
作者:
Lin-Feng Wang|
同期刊论文项目
曲率流及相关几何问题研究
期刊论文 17
同项目期刊论文
加权p-Laplace的特征估计
加权测度的一个分裂定理
广义Chernoff不等式的稳定性
L_f^p-谱与Tau-拟爱因斯坦度量
On weak Berwald (α, β)-metrics of scalar flag curvature
An area-preserving flow for closed convex plane curves
Evolving convex curves to constant width ones by a perimeter-preserving curve flow
Two measures of asymmetry for revolutionary constant width bodies in R^3
Positive center sets of convex curves
Some notes on Green-Osher's inequality
Deforming convexcurves with fixed elastic energy
A Myers theorem via m-Bakry-Emery curvature
Diameterestimate for compact quasi- Einstein metrics
Gage's original normalized CSF can also yield theGrayson theorem
一类特殊的拟几乎Einstein度量直径的下界估计
A sharp gradient estimate for the weighted p-Laplacian