位置:成果数据库 > 期刊 > 期刊详情页
Swarm intelligence optimization and its application in geophysical data inversion
  • ISSN号:1672-7975
  • 期刊名称:《应用地球物理:英文版》
  • 时间:0
  • 分类:P631[天文地球—地质矿产勘探;天文地球—地质学] O177.91[理学—数学;理学—基础数学]
  • 作者机构:[1]CNPC Key Laboratory of Geophysical Exploration, Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum, Beijing 102249, China
  • 相关基金:This research was financially supported by the 973 Program (Grant No 2007CB209600) and Open Fund (No. GDL0706) of the Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education.
中文摘要:

复杂地球物理的数据的倒置总是解决多参数,非线性、多模式的优化问题。寻找最佳的倒置答案类似于当寻找食物时,在象鸟和蚂蚁那样的群观察的社会行为。在这篇文章,首先,粒子群优化算法详细被描述,并且蚂蚁殖民地算法改善了。然后,方法被用于地球物理的倒置问题的三种不同类型:(1 ) 对噪音敏感的一个线性问题,(2 ) 线性、非线性的问题的同步倒置,并且(3 ) 一个非线性的问题。结果验证他们的可行性和效率。与常规基因算法相比并且退火模仿,他们有更高的集中速度和精确性的优点。与伪相比 -- 牛顿方法和 Levenberg-Marquardt 方法,他们与克服局部地最佳的答案的能力更好工作。

英文摘要:

The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用地球物理:英文版》
  • 主管单位:中国科协
  • 主办单位:中国地球物理学会
  • 主编:范伟粹
  • 地址:北京和平里邮局76号信箱
  • 邮编:100013
  • 邮箱:cgsbull@china.com
  • 电话:010-84288401 64266649
  • 国际标准刊号:ISSN:1672-7975
  • 国内统一刊号:ISSN:11-5212/O
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国地质文献预评数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,美国石油文摘
  • 被引量:150