位置:成果数据库 > 期刊 > 期刊详情页
一种基于拟牛顿法的大类别分类算法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北大学计算机科学系,陕西西安710069, [2]北京师范大学信息科学与技术学院,北京100875
  • 相关基金:国家自然科学基金项目(60372072)资助.
中文摘要:

支持向量机利用接近边界的少数向量来构造一个最优分类面。然而当两类中的样本数量差别悬殊时,PSVM算法则会过度拟合样本量大的那一类,而对样本量很小的那一类的错分率相当高。为解决此问题,本文提出了一种改进的支持向量机算于拟牛顿法的大类别分类算法。同时,这个问题也是大类别分类问题所采用的留一法面临的问题,在DFP-PSVM的基础上,提出了基于拟牛顿法的大类别分类算法。通过仿真实验证实了此算法在精度上优于PSVM算法。

英文摘要:

Support vector machine constructs an optimal hyperplane utilizing a small set of vectors near boundary. However, when the two-class problem samples are very unbalanced, PSVM tends to fit better the class with more samples and has high error in fewer samples. To solve the problem, an improved SVM algorithm, DFP-PSVM, is presented in this paper. Furthermore, this drawback exists in one-from-the-rest approach to multi-classes. A multi-class classification algorithm using quasiNewton is proposed based on DFP-PSVM. Simulated examples show that the novel algorithm is prior to the plain PSVM.

同期刊论文项目
期刊论文 65 会议论文 4
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212