新一代网络环境下,用户与信息之间的交互耦合及其动态演化更加突出,并基于此形成了多样及多变的用户群组和信息群组。为了提高网络信息共享、传输及获取的效率,需要揭示用户与信息间的耦合及演化机制。本研究主要探讨其耦合机制的研究范式,尝试基于社会网理论揭示用户与信息间的耦合影响机制;基于概率图模型及多主体仿真揭示用户与信息间的关联演化机制;基于社会网理论构建用户群组和信息群组的模式识别模型。用户与信息间的耦合及演化机制的揭示,可丰富行为经济学、复杂性科学以及图书情报档案学等领域的相关理论,用户群组与信息群组模式识别模型的构建,有助于提高网络信息的社会化获取及个性化服务的效率。
In the new Web environment, the interactive coupling and dynamic and information are increasing To improve the efficiency of o , and it leads to divers and variable btaining , transmitting, and sharing groups of users or about information evolution among users information contents. content, the coupling and evolution mechanism should be revealed. This paper mainly focuses on the research paradigm of coupling mechanism, reveals the coupling mechanism by social network analysis and the associative dynamics by probability graph model and multi -agent, and constructs pattern recognition model by social network model. By revealing the coupling mechanism among users and information, the theories of economics, system science, and information management could be enriched. Constructing the model of pattern recognition is desirable to the efficiency of obtaining Web information and personal information services.