为了提高孤立性肺结节良恶性诊断中的分类准确度,提出了一个基于自生成神经网络的自动分类算法。该算法首先对PET/CT图像进行去噪、配准等预处理,分别提取孤立性肺结节的结构影像特征和代谢特征,然后对自生成神经网络进行训练和优化,构建分类器,根据距离测度和自动连接规则对待分类肺结节进行分类。初步的实验结果表明,与传统的自生成神经网络算法和BP神经网络算法相比,改进的自生成神经网络分类算法能得到更高的分类准确率。