位置:成果数据库 > 期刊 > 期刊详情页
基于改进自生成神经网络的肺部CT序列图像分割
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:太原理工大学计算机科学与技术学院,晋中030600
  • 相关基金:国家自然科学基金项目(61540007,61373100); 国家重点实验室开放基金资助项目(BUAA-VR-15KF02,BUAA-VR-16KF13)资助
中文摘要:

针对肺实质序列图像分割方法的时效性低和分割不完全性等问题,利用先验知识得到肺部CT序列ROI图像,提出超像素序列分割算法对ROI序列图像进行分割,采用改进的自生成神经网络对超像素进行聚类并优化,根据聚类后样本的灰度和位置特征识别肺实质区域。在序列肺实质图像的分割结果中,单张CT图像的平均处理时间为0.61s,同时能达到92.09±1.52%的平均肺部体素重合度。与已有的方法相比,所提算法能在相对较短的时间内获得较高的分割精准度。

英文摘要:

Existing lung segmentation methods cannot fully segment all lung parenchyma images and have slow processing speed.The position of the lung was used to obtain lung ROI sequences,and an algorithm of superpixel sequences segmentation was then proposed to segment the ROI image sequences.In addition,improved self-generating neural networks were utilized for superpixel clustering and the grey and geometric features were extracted to identify and segment lung image sequences.The experimental results show that our method's average processing time is 0.61 second for a single slice and it can achieve average volume pixel overlap ratio of 92.09±1.52%.Compared with the existing methods,our method has higher segmentation precision and accuracy with less time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227