位置:成果数据库 > 期刊 > 期刊详情页
Preparation of rare-earth element doped Mg_2Si by FAPAS
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TQ342.2[化学工程—化纤工业] TS207.3[轻工技术与工程—食品科学;轻工技术与工程—食品科学与工程]
  • 作者机构:[1]Department of Mechanical Engineering, Anhui Vocational College of Defense Technology, Lu'an 237011, China, [2]Department of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 相关基金:supported by the National Natural Science Foundation of China(Nos.50671070,50975190); the SXSCC(No.200826)
中文摘要:

<正>Rare-earth elements(Re) Sc and Y doped Mg2Si thermoelectric materials were made via a field-activated and pressure-assisted synthesis(FAPAS) method at 1023-1073 K,50 MPa for 15 min.The samples created using this method have uniform and compact structures.The average grain size was about 1.5-2μm,the micro-content of Re did not change the matrix morphology.The sample with 2500 ppm Sc obtained the best Seebeck coefficient absolute value,about 1.93 times of that belonging to non-doped Mg2Si at about 408 K.The electric conductivity of the sample doped with 2000 ppm Y becomes 1.69 times of that of pure Mg2Si at 468 K,while the former had a better comprehensive electrical performance.Their thermal conductivity was reduced to 70%and 84% of that of non-doped Mg2Si.Thus,the figure of merit and ZT of these two samples were enhanced visibly,which were 3.3 and 2.4 times of the non-doped samples at 408 K and 468 K,respectively.The maximal ZT belonging to samples doped with 2500 ppm Sc went up to 0.42 at about 498 K,higher than 0.40 of sample doped with 2000 ppm Y at 528 K and 0.25 of non-doped Mg2Si at 678 K,and the samples doped with Sc seemed to get the best thermoelectric performances at lower temperature.

英文摘要:

Rare-earth elements(Re) Sc and Y doped Mg_2Si thermoelectric materials were made via a field-activated and pressure-assisted synthesis(FAPAS) method at 1023-1073 K,50 MPa for 15 min.The samples created using this method have uniform and compact structures.The average grain size was about 1.5-2μm,the micro-content of Re did not change the matrix morphology.The sample with 2500 ppm Sc obtained the best Seebeck coefficient absolute value,about 1.93 times of that belonging to non-doped Mg_2Si at about 408 K.The electric conductivity of the sample doped with 2000 ppm Y becomes 1.69 times of that of pure Mg_2Si at 468 K,while the former had a better comprehensive electrical performance.Their thermal conductivity was reduced to 70%and 84% of that of non-doped Mg_2Si.Thus,the figure of merit and ZT of these two samples were enhanced visibly,which were 3.3 and 2.4 times of the non-doped samples at 408 K and 468 K,respectively.The maximal ZT belonging to samples doped with 2500 ppm Sc went up to 0.42 at about 498 K,higher than 0.40 of sample doped with 2000 ppm Y at 528 K and 0.25 of non-doped Mg_2Si at 678 K,and the samples doped with Sc seemed to get the best thermoelectric performances at lower temperature.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754