讨论一类具Hardy—Sobolev临界指数的非齐次半线性椭圆方程,通过应用Lions集中紧性原理建立了Su(Ω)的极小函数,再结合Ekeland变分原理、山路引理和Nehari流形的分析方法证明了方程在适当条件下正解的存在性与多重性.
In this paper, we discuss a class of nonhomogeneous semilinear elliptic equations with critical Hardy-Sobolev exponents. We get a minimizer of Su(Ω) by using the concentration compactness principle due to Lions. Combining the Ekeland variational principle, a mountain pass lemma and the analysis methods of Nehari manifold, we prove the existence and multiplicity results of positive solutions under certain appropriate conditions.