设S是Rn中"最小"的半格,在一个Jordan代数J(S)的基础上,通过所谓的Tits-Kantor-Koecher方法可构造TKK代数T(J(S)).首先给出了由任意一个量子环面Cq得到的李代数gl2(Cq)上的一个Bosonic表示,通过将TKK代数T(J(S))嵌入到一个特殊的量子环面对应的李代数gl2(Cq)中,得到了TKK代数T(J(S))的一个Bosonic表示.而且,也得到了这个TKK代数T(J(S))的表示的一个忠实的子表示.
Let S be the "smallest" semilattice in Rn.From a Jordan algebra J(S),using the so-called Tits-Kantor-Koecher construction,we can obtain TKK algebra T(J(S)).In this paper we first give a Bosonic representation of Lie algebra gl2(Cq) which is obtained from any a quantum torus Cq and prove that TKK algebra T(J(S)) can be embedded in the Lie algebra gl2(Cq) with respect to a special quantum torus.So we also give a Bosonic representation of TKK algebra T(J(S)).Besides,we also attain a faithful sub-representation of this representation for TKK algebra T(J(S)).