位置:成果数据库 > 期刊 > 期刊详情页
一种基于混合核函数PSO_SVR的网络安全态势预测方法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:重庆邮电大学移动通信技术重庆市重点实验室,重庆400065
  • 相关基金:国家自然科学基金项目(61271260); 教育部科学研究重点项目(212145); 重庆市教委科学技术研究项目(KJ1400405)
中文摘要:

为了对错综复杂的网络安全形势做出可靠的预测,提出了一种基于混合核函数PSO_SVR的网络安全态势预测模型.本模型针对基于传统支持向量机(SVR)的网络安全态势预测模型精度不够高,其核函数的选择及参数的设定没有统一标准的情况,构造了一种兼顾插值能力和外推性能的混合核函数.并引入粒子群算法(PSO)对基于混合核函数的SVR进行参数寻优,有效地提高了SVR预测能力.通过仿真实验表明,该模型相比与传统的网络安全态势预测方法,预测精度上更有保障.

英文摘要:

In order to predict the complicated network security situation reliably,a hybrid network security situation predictive model based on kernel function PSO_SVR is proposed.To solve the problem that the accuracy of prediction is low and there is no uniform to set the parameters,we construct a hybrid kernel function whose interpolation and extrapolation performance is good.The particle warm optimization(PSO)based on hybrid kernel function is introduced to search the optimization parameters.The simulation results show that the model compared with the traditional network security situation prediction method is more secure than in the prediction accuracy.The predictions are more scientific and reliable.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909