位置:成果数据库 > 期刊 > 期刊详情页
基于Mean Shift算法的运动平台下红外目标跟踪
  • ISSN号:1007-2276
  • 期刊名称:《红外与激光工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]第二炮兵工程学院计算机与指挥自动化系,陕西西安710025
  • 相关基金:国家自然科学基金资助项目(60572080)
中文摘要:

运动平台下,图像的运动包括目标、背景和平台的运动。复杂的运动关系,加上运动平台下成像质量差,增加了目标跟踪的难度。提出了一种有效的运动平台下前视红外(FLIR)成像目标跟踪算法。对于每一个被检测出的目标,计算灰度和局部标准差的分布,通过计算Mean Shift向量,最小化当前帧目标与模板的核密度分布,实现对目标的跟踪。采用自动更新模板的策略克服目标特征分布发生改变的问题,该策略同样取决于得到的模板与目标分布相似性度量。实验仿真证明,该算法能有效地、准确地跟踪红外成像序列中的运动目标,计算量小,可以满足实时性要求高的场合。

英文摘要:

On airborne platform, image movements involve target movement, background movement and platform movement. Movement complexity and bad quality of imaging on airborne platform increase the difficulty of target tracking. An efficient approach is proposed for tracking targets in FLIR (Forward Looking Infrared) imagery taken from an airborne platform. For each detected target, distributions of intensity and local standard deviation are computed, and tracking is performed by computing the Mean Shift vector that minimizes the distance between the kernel density distribution of the target in the current frame and the template. To overcome the problems related to the changes in the target feature distributions, the strategy is used to automatically update the target template. Selection of the strategy updating new target template is based on the distance measure computed from the likelihood of target and candidate distributions. Experimental results show that the proposed algorithm can track the moving target in airborne infrared image sequence efficiently and precisely, and also can meet high real-time situation for its small calculation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与激光工程》
  • 中国科技核心期刊
  • 主管单位:中国航天科工集团
  • 主办单位:天津津航技术物理研究所
  • 主编:张锋
  • 地址:天津市空港经济区中环西路58号
  • 邮编:300308
  • 邮箱:irla@csoe.org.cn
  • 电话:022-58168883 /4/5
  • 国际标准刊号:ISSN:1007-2276
  • 国内统一刊号:ISSN:12-1261/TN
  • 邮发代号:6-133
  • 获奖情况:
  • 1996年获航天系统第五次科技期刊评比三等奖,1998年获航天系统第六次科技期刊评比二等奖,1997-2001年在天津市科技期刊评估中被评为一级期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17466