位置:成果数据库 > 期刊 > 期刊详情页
基于联合概率矩阵分解的上下文广告推荐算法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国科学院计算技术研究所,北京100190
  • 相关基金:国家自然科学基金(60873243)
中文摘要:

上下文广告与用户兴趣及网页内容相匹配,可增强用户体验并提高广告点击率.而广告收益与广告点击率直接相关,准确预测广告点击率是提高上下文广告收益的关键.目前,上下丈广告推荐面临如下问题:(1)网页数量及用户数量规模很大;(2)历史广告点击数据十分稀疏,导致点击率预测准确率低.针对上述问题,提出一种基于联合概率矩阵分解的因子模型AdRec,它结合用户、广告和网页三者信息进行广告推荐,以解决数据稀疏时点击率预测准确率低的问题.算法复杂度随着观测数据数量的增加呈线性增长,因此可应用于大规模数据.

英文摘要:

Combining user interests with visited web page contents to perform contextual advertising enhances the user experience and adds more ad clicks, increasing revenue. The key issue is to improve the prediction accuracy of click rates for advertisements. The crucial challenges of the advertisement recommendation algorithm are the scalability on large number of users and web page contents, and the low prediction accuracy resulting from data sparsity. When data is large and sparse, the accuracy and efficiency of the traditional recommendation algorithms is poor. This paper proposes a factor model called AdRec. Based on the Unified Probability Matrix Factorization (UPMF), the model addresses the data sparsity problem by combining features of users, advertisements and web page contents to predict the click rate with higher accuracy. In addition, the computational complexity of our algorithm is linear with respect to the number of observed data, and scalable to very large datasets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609