微博作为一种新型的社会媒体,以其信息的高实时性、话题动态关注、传播速度快的特点,逐渐被人们所接受和使用。筛选出相关话题的微博信息,帮助用户关注话题的动态发展,成为迫切需要解决的问题。由于微博信息篇幅极短、包含的信息和特征少等特点,为相关话题微博信息的筛选带来了新的挑战,而传统的文本分类技术已不再适用。该文提出了基于信息摘的筛选规则学习算法,利用学习得到的规则对微博信息进行有效的筛选。算法利用信息熵来评价规则的好坏,同时基于模拟退火的随机策略使算法中的规则选择避免了过于贪心。分别通过来自新浪微博的约九万条标注数据和TREC2011中约三千条特定话题的标注数据进行实验,该文算法相比于CPAR和SVM算法,学习得到的规则在筛选时取得了较高的F值。
Microblog as a new social media plays more and more important role in current life due to its real time, trends and Spreading of information. The issue that filtering tweets according to a concerning topic for tracking its trends is of substantial significance to the users. Since a tweet is extremely short, containing less information and textual features, how to filter the short tweets becomes a challenge in that the traditional text classification is no lon- ger applicable. In this paper, we proposed a entropy-based classification rule learning algorithm to filter tweets by topics. The experimental results on nearly 90 000 tweets and 3 000 officially labeled tweets from Sina Weibo and TREC 2011 show that our algorithm achieves higher F-score in filtering tweets by topics than CPAR and SVM algorithms.