位置:成果数据库 > 期刊 > 期刊详情页
采摘机器人果实识别的多源图像配准
  • ISSN号:1000-1298
  • 期刊名称:农业机械学报
  • 时间:2013.3.3
  • 页码:197-203
  • 分类:TP242.62[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国农业大学现代精细农业系统集成研究教育部重点实验室,北京100083, [2]河北农业大学信息科学与技术学院,保定071001
  • 相关基金:国家自然科学基金资助项目(31071333)和保定市科学技术研究与发展计划资助项目(12ZG011)
  • 相关项目:基于主动成像的苹果采摘机器人果实识别与定位方法研究
中文摘要:

为了提高果实识别的准确性,减少非结构化环境对识别的影响,使用基于光学混合探测(PMD)技术的深度摄像机与RGB摄像机组合捕获果园环境的多源图像;SURF算法提取待配准图像的尺度不变特征,欧式距离作为判断特征相似性的测度,最近邻与次近邻比值实现特征向量的初匹配,最近邻的搜索策略加速匹配过程;剔除异常点与优化模型交替迭代的方法提纯匹配结果;并以均方误差(MSE)、归一化互信息(NMI)和相关系数(COEF)作为配准效果的客观评价标准。不同试验结果表明:双摄像机组合丰富了锁定目标区域的信息量,配准算法的实时性、鲁棒性及精度均能满足果园试验的要求。

英文摘要:

In order to improve the accuracy rates and lower the impact on fruit recognition in unstructured environment, a combination of PMD camera and color camera was used to capture multi-source images of orchard scenes, SURF algorithm was used for extracting scale invariant features, Euclidean distance was regarded as a measure for judging the similarity of features, the ratio of distance from the closest neighbor to the distance of the second closest was utilized for initially matching feature vectors, BBF algorithm was devoted to speed up the closest neighbor' s query, a kind of iterative method between picking out outlier points and optimization of model was applied to purify results, the performance of image registration was evaluated according to the MSE, NMI and COEF. The different experimental results show that the amount of information locking to object are enriched by the combination of cameras, the hybrid algorithm is realtime, robust and has ideal precision, which meets the need of orchard test.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884