位置:成果数据库 > 期刊 > 期刊详情页
基于量子遗传模糊神经网络的苹果果实识别
  • ISSN号:1000-1298
  • 期刊名称:农业机械学报
  • 时间:2013.12.12
  • 页码:227-232
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国农业大学现代精细农业系统集成研究教育部重点实验室,北京100083, [2]黑龙江八一农垦大学信息技术学院,大庆163319
  • 相关基金:国家自然科学基金资助项目(31071333)和中央高校基本科研业务费专项资金资助项目(2013YJ008)
  • 相关项目:基于主动成像的苹果采摘机器人果实识别与定位方法研究
中文摘要:

针对田间苹果采摘机器人视觉系统中彩色图像边界像素的模糊性和不确定性影响苹果果实识别精度和速度问题,提出了一种将量子遗传算法的全局搜索能力和模糊推理神经网络的自适应性相结合的算法来识别苹果果实。利用量子遗传算法对模糊神经网络的可调整参数初始值进行了全局优化,加快了网络学习速度,避免了传统BP误差反向传播学习算法易陷入局部极小值、迭代次数多等弊端。实验表明:该识别模型高速且稳定,鲁棒性好,对于果实本身颜色不均匀样本正确识别率为100%,对自然光照引起颜色不均匀样本正确识别率为96.86%,对邻接图像正确识别率为94.29%,对重叠图像正确识别率为92.31%。

英文摘要:

The apple images were hard to be identified at a faster speed and a higher accuracy because of fuzzy and uncertain factors existing in the color image boundary pixels, so in order to overcome the disadvantages above, a model combined quantum genetic algorithm and fuzzy neural network was built up which showed the capability of global search capability and adaptation. In the proposed model, quantum genetic algorithm was used to optimize the initial value of adjustable parameter in fuzzy neural network, which avoided redundant iteration and the incline to fall into the local minimum value of traditional BP algorithm. The experimental results showed that the proposed model achieved accuracy of 100% for the uneven color samples, 96.86% for sunlight influenced samples, 94.29% for the adjacent samples, and 92.31% for the overlapping samples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884