Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph(MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively.
Network modeling is an important approach in many fields in analyzing complex systems. Recently new series of methods have emerged, by using Kronecker product and similar tools to model real systems. One of such approaches is the multiplicative attribute graph (MAG) model, which generates networks based on category attributes of nodes. In this paper we try to extend this model into a continuous one, give an overview of its properties, and discuss some special cases related to real-world networks, as well as the influence of attribute distribution and affinity function respectively.