摘要:证明了不定方程x^2-kxy+y^2+lx=0(1∈{3,5},k∈N^+)有无穷多个正整数解(x,y)当且仅当k与l的取值为(k,l)=(3,3),(4,3),(5,3),(3,5),(5,5),(7,5)。
Abstract: It is proved that the Diophantine equations x^2 - kxy + y^2 + lx = 0, l∈{3,5} have infinite number of positive integer solutions (x, y) if and only if (k, l) = (3,3), (4,3), (5,3), (3,5), (5,5), (7,5).