位置:成果数据库 > 期刊 > 期刊详情页
一种相似性保持的线性嵌入哈希方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:西安电子科技大学电子工程学院,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(61179003); 重点实验室资助项目
中文摘要:

在图像检索技术中,针对高维特性海量的图像数据检索速度慢、数据存储容量大及图像和其哈希编码之间相关性差的缺点,将相关性预测函数引入到哈希算法中,提出了一种相似性保持的线性嵌入哈希方法.该方法利用相关性预测函数保持高维数据与其编码之间的邻近关系,使边界损失代价最小化,构建线性哈希映射矩阵,获得紧致的哈希编码,提高了图像与编码间的相关性,实现了高精度的图像检索.通过与现存经典的哈希算法相对比,实验结果验证了线性嵌入哈希方法在查全率和查准率上的有效性.

英文摘要:

In order to implement quick and effective search, save the storage space and improve the poor performance of affinity relationshaps between high dimensional data and its codes in image retrieval, a new linear embedding hashing is proposed by introducing the preserving similarity. First, the whole data set is clustered into several classes, and then the similarity predicted function is used to maintain affinity relationships between high dimensional data and its codes so as to establish the objective function. By minimizing the margin loss function, the optimal embedded matrix can be obtained. Compared with the existing classic hashing algorithm, experimental results show that the performance of the linear embedding hash algorithm is superior to the other binary encoding strategy on precision and recall.

同期刊论文项目
期刊论文 14 会议论文 19
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591