位置:成果数据库 > 期刊 > 期刊详情页
压电材料迟滞非线性特性的幂函数多项式模型
  • ISSN号:1000-4939
  • 期刊名称:应用力学学报
  • 时间:2013.8.15
  • 页码:493-497
  • 分类:O1[理学—数学;理学—基础数学] U260.61[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程]
  • 作者机构:[1]School of Mechanical Engineering, Tianjin University, Tianjin 300072, China, [2]Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, China
  • 相关基金:Supported by the National Natural Science Foundation of China (No. 11172199) and the Key Project of Tianjin Municipal Natural Science Foundation (No. 11JCZDJC25400).
  • 相关项目:双稳态压电发电系统的分岔、大幅周期与混沌运动机理与实验
作者: 贾尚帅|孙舒|
中文摘要:

A modified Lindstedt-Poincaré(LP) method for obtaining the resonance periodic solutions of nonlinear non-autonomous vibration systems is proposed in this paper. In the modified method, nonlinear non-autonomous equations are converted into a group of linear ordinary differential equations by introducing a set of simple transformations.An approximate resonance solution for the original equation can then be obtained. The periodic solutions of primary, super-harmonic, sub-harmonic, zero-frequency and combination resonances can be solved effectively using the modified method. Some examples, such as damped cubic nonlinear systems under single and double frequency excitation,and damped quadratic nonlinear systems under double frequency excitation, are given to illustrate its convenience and effectiveness. Using the modified LP method, the first-order approximate solutions for each equation are obtained. By comparison, the modified method proposed in this paper produces the same results as the method of multiple scales.

英文摘要:

A modified Lindstedt-Poincaré (LP) method for obtaining the resonance periodic solutions of nonlinear non-autonomous vibration systems is proposed in this paper. In the modified method, nonlinear non-autonomous equa-tions are converted into a group of linear ordinary differential equations by introducing a set of simple transformations. An approximate resonance solution for the original equation can then be obtained. The periodic solutions of primary, super-harmonic, sub-harmonic, zero-frequency and combination resonances can be solved effectively using the modi-fied method. Some examples, such as damped cubic nonlinear systems under single and double frequency excitation, and damped quadratic nonlinear systems under double frequency excitation, are given to illustrate its convenience and effectiveness. Using the modified LP method, the first-order approximate solutions for each equation are obtained. By comparison, the modified method proposed in this paper produces the same results as the method of multiple scales.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用力学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:西安交通大学
  • 主编:陈宜亨
  • 地址:西安市咸宁西路28号西安交通大学
  • 邮编:710049
  • 邮箱:cjam@mail.xjtu.edu.cn
  • 电话:029-82668756
  • 国际标准刊号:ISSN:1000-4939
  • 国内统一刊号:ISSN:61-1112/O3
  • 邮发代号:
  • 获奖情况:
  • 国际工程索引(EI)及我国力学类核心期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8573