位置:成果数据库 > 期刊 > 期刊详情页
Fabrication and application of a graphene polarizer with strong saturable absorption
  • ISSN号:2327-9125
  • 期刊名称:《光子学研究:英文版》
  • 时间:0
  • 分类:TN25[电子电信—物理电子学]
  • 作者机构:The State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Department of Physics, Southeast University
  • 相关基金:supported by National Natural Science Foundation of China(61322507,61090393 and 61575122)
中文摘要:

By transferring 100 nm gold-coated CVD monolayer graphene onto the well-polished surface of D-shaped fiber, we achieve a graphene in-line polarizer with a high polarization extinction ratio of ~27 d B and low insertion loss of 5 d B at 1550 nm, meanwhile achieving a strong saturable absorption effect of 14%. The manufacture of this graphene in-line polarizer also simplifies the graphene transfer process. To explore the potential applications of the new device, we also demonstrate noise-like pulse generation and supercontinuum spectrum generation. By launching the designed graphene device into a fiber ring laser cavity, 51 nm bandwidth noise-like pulse is obtained. Then, launching the high-power noise-like pulse into high nonlinear fiber, a 1000 nm wide supercontinuum spectrum is obtained, which is favorable for sensing and nonlinearities scientific fields.

英文摘要:

By transferring 100 nm gold-coated CVD monolayer graphene onto the well-polished surface of D-shaped fiber, we achieve a graphene in-line polarizer with a high polarization extinction ratio of similar to 27 dB and low insertion loss of 5 dB at 1550 nm, meanwhile achieving a strong saturable absorption effect of 14%. The manufacture of this graphene in-line polarizer also simplifies the graphene transfer process. To explore the potential applications of the new device, we also demonstrate noise-like pulse generation and supercontinuum spectrum generation. By launching the designed graphene device into a fiber ring laser cavity, 51 nm bandwidth noise-like pulse is obtained. Then, launching the high-power noise-like pulse into high nonlinear fiber, a 1000 nm wide supercontinuum spectrum is obtained, which is favorable for sensing and nonlinearities scientific fields. (C) 2016 Chinese Laser Press

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光子学研究:英文版》
  • 主管单位:
  • 主办单位:中国科学院上海光学精密机械研究所
  • 主编:
  • 地址:上海市
  • 邮编:
  • 邮箱:
  • 电话:021-
  • 国际标准刊号:ISSN:2327-9125
  • 国内统一刊号:ISSN:31-2126/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:1