位置:成果数据库 > 期刊 > 期刊详情页
流形判别分析
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中北大学电子与计算机科学技术学院,太原030051, [2]山西大学商务学院信息学院,太原030031
  • 相关基金:国家自然科学基金(61202311)和山西省自然科学基金(2012011011-3)资助课题
中文摘要:

传统降维方法主要有两种思路:一是利用样本的全局特征,保证降维前后样本的全局特征不变;二是尽量保证相邻样本在降维前后的相对关系不变。传统方法由于未能充分利用样本的已有信息,因此降维效率有限。鉴于此,在Fisher准则和局部流形保持的基础上,该文提出流形判别分析。该方法首先定义了基于流形的类内离散度MWCS和类问离散度MBCS,然后利用Fisher准则找到最佳投影方向,该方向满足MBCS与MWCS之比最大。该方法不仅继承了传统降维方法的优势,而且进一步提高了降维效率。标准数据集上的实验结果表明该文所提方法的有效性。

英文摘要:

Researches on current Dimensionality Reduction (DR) methods are mainly based on two ways. One attempts to ensure the stabilities of global features of high-dimensional samples, the other tries to make the local manifold structure between data before and after dimension reduction be as invariant as possible. As the existed information is not fully utilized by current DR methods, the DR efficiencies are restricted. Based on the above analysis, Manifold-based Discriminnant Analysis (MDA) is proposed based on Fisher criterion and manifold preserving. The global features and local structure are both taken into consideration by MDA. It defines two scatters: Manifold-based Within-Class Scatter (MWCS) and Manifold-based Between-Class Scatter (MBCS). According to Fisher criterion, the optimal projection satisfies the ratio of MBCS and MWCS is maximized. MDA not only inherits the superiorities of current DR methods, but further improves the DR efficiencies. Experiments on some standard datasets verify the effectiveness of the proposed method MDA.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739