当前国内交通态势估计的研究与应用呈现出区域性之显著特点,聚类技术在其研究中占据着极其重要的作用。当面对大范围公路网交通态势估计研究时,现有的聚类方法会面临数据吞吐量弱、实时性和实用性差的困境。本课题拟针对此问题提出适合于海量交通态势流的超大规模在线聚类方法。课题组基于已有的快速图论松弛聚类算法,引入关联矩阵估计技术提出其在线图论松弛聚类版本,并在此基础上通过拟研究的基于一致集的快速聚类集成算法,提出本课题最终的基于关联矩阵估计和一致集快速聚类集成的超大规模在线图论松弛聚类方法。拟发展的此方法将具有非对称态势信息处理、超大规模数据吞吐量和在线自适应聚类等优点,并试图为解决大范围公路网交通态势的监测、估计和应急处理之科学问题提供新途径。本课题所要解决的问题来源于申请者及课题组的工程实践,但也具有普适意义,其成果对于计算智能、模式识别和交通管理等领域均具有重要的学术和应用意义。
英文主题词Knowledge transfer learning;semi-supervised learning;multi-view learning;large-scale data processing;monitoring of traffic flow of road network