不可压缩粘滞弄弯的表面上的流动关于表面几何学,弯曲,和涡度动力学的相互影响被考虑。免费流动并且圆柱在一个 Gaussian 肿块上醒来数字地用表面涡度溪流功能明确的表达被解决。数字模拟证明 Gaussian 弯曲能产生涡度,并且 Gaussian 弯曲的不一致是主要原因。在里面圆柱醒来,积极 Gaussian 弯曲统治的肿块能显著地由形成速度消沉和变化涡度运输影响旋涡街。结果可以为在表面几何学通过本地变化操作表面流动提供可能性。
Incompressible viscous flows on curved surfaces are considered with respect to the interplay of surface geometry, curvature, and vorticity dynamics. Free flows and cylindrical wakes over a Gaussian bump are numerically solved using a surface vorticity- stream function formulation. Numerical simulations show that the Gaussian curvature can generate vorticity, and non-uniformity of the Gaussian curvature is the main cause. In the cylindrical wake, the bump dominated by the positive Gaussian curvature can significantly affect the vortex street by forming velocity depression and changing vorticity transport. The results may provide possibilities for manipulating surface flows through local change in the surface geometry.