位置:成果数据库 > 期刊 > 期刊详情页
Mechanical model for yield strength of nanocrystalline materials under high strain rate loading
  • ISSN号:1001-4381
  • 期刊名称:《材料工程》
  • 时间:0
  • 分类:O347[理学—固体力学;理学—力学]
  • 作者机构:School of Mechanical Engineering,Nanjing University of Technology, School of Materials Science and Engineering,Nanjing University of Technology
  • 相关基金:Project(10502025) supported by the National Natural Science Foundation of China;Project(101005) supported by Fok Ying Tong Education Foundation;Project(BK2007528) supported by the Natural Science Foundation of Jiangsu Province,China
中文摘要:

To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

英文摘要:

To understand the high strain rate deformation mechanism and determine the grain size, strain rate and porosity dependent yield strength of nanocrystalline materials, a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed. As a first step of the research, the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification. Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase, and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed, then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials. The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data. Further discussion was presented for calculation results and relative experimental observations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《材料工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国航空工业集团公司
  • 主办单位:中国航空工业集团公司 北京航空材料研究院
  • 主编:曹春晓
  • 地址:北京市海淀区温泉镇环山村8号
  • 邮编:100095
  • 邮箱:matereng@biam.ac.cn
  • 电话:010-62496276
  • 国际标准刊号:ISSN:1001-4381
  • 国内统一刊号:ISSN:11-1800/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16726