位置:成果数据库 > 期刊 > 期刊详情页
6LoWPAN网络能耗性能建模分析
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京邮电大学信息网络技术研究所,南京210003
  • 相关基金:国家高技术研究发展计划“863”项目(No.2009AA01Z212, No.2009AA01Z202); 国家自然科学基金项目(No.61003237)资助
中文摘要:

针对网络环境中存在大量噪声和网络流量中存在过多的冗余特征属性,提出了一种具有特征有效度的模糊支持向量机(FW-FSVM),并将FW-FSVM应用于网络流量分类领域。该方法根据不同样本点对分类贡献的大小赋予相应的模糊因子,可以有效地消除噪声对分类精度的影响;同时计算网络流量中各个特征的有效度,消除弱特征属性或冗余特征属性对网络流量分类精度的影响。实验结果表明,FW-FSVM相比于其他网络流量分类方法能有效地提高网络流量分类精度且分类稳定性较高。

英文摘要:

Since there are much noise and redundant features in network traffic,a novel fuzzy support vector machine with feature weighted degree(FW-FSVM) is proposed in this paper and applied in network traffic classification.Corresponding fuzzy factors are given according to the contribution of sample points to classification accuracy,which eliminates the influence of noise on classification accuracy.Feature weighted degree of each feature is also calculated to eliminate the influence of weak and redundant features on classification accuracy.Experimental results show that compared with other approaches of network traffic classification,FW-FSVM has higher classification accuracy and stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909