HT-7超导托卡马克进行DD等离子体放电时,中子的辐射与辅助加热射频波的类型(LHW加热、ICRF加热)及功率密切相关.利用BF3与3He正比计数管组成的快速时间分辨中子注量监测系统,研究了不同类型的射频加热对于中子产生机理及高能离子形成的影响.LHW加热功率较低时,易形成逃逸,产生大量的光中子.特定频率的ICRF(27MHz,24MHz)加热时,聚变中子所占份额以及总的中子产额均随波功率的增大而显著增涨.
Neutron radiation was specially correlated with the type and the power of the radio frequency ( RF) heating for deuterium plasma on HT-7 tokamak. We hare researched the production mechanism of the fast neutron under different RF heating conditions by the fast time-resolved neutron flux measurement system make up of BF3 and 3He proportional counters. Lower power of LHW heating was apt to bring abont runaway discharge and produce a mass of photoneutrons. The rate of fusion neutron and the total neutron yield will rapidly increase with the ion cyclotron resonance heating at the special frequencies of (27 MHz and 24 MHz).