研究了形式如下的一类由H rmander向量场构成的退化椭圆方程∑mi,j=1Xi*(aij(x)Xju+diu)+∑mi=1biXiu+eu=f-∑mi=1Xifi,在方程的低阶项的系数属于退化Morrey空间的假定下,利用加权的Sobolev不等式、退化Morrey空间的加权的嵌入引理和经典的Moser迭代方法,证明了方程的弱解是局部有界的,得到了方程的非负弱解的Harnack不等式,从而得到了方程弱解的H lder连续性.欧氏空间退化椭圆方程的一些结果被推广到H rmander向量场的情形.
A class of degenerate elliptic equations formed by Hrmander vector fields of the form ∑mi,j=1X*i(aij(x)Xju+diu)+∑mi=1biXiu+eu=f∑mi=1Xifi,are studied.By weighted Sobolev inequality,weighted embedding lemma related to degenerate Morrey space and classic Moser s iteration method,local boundedness of weak solution and Harnack s inequality for nonnegative weak solution are proved under the assumption that the coefficients of the lower order terms are in degenerate Morrey space.As a consequence,local Hlder cont...