位置:成果数据库 > 期刊 > 期刊详情页
基于量子行为特性粒子群和自适应网格的多目标优化算法
  • ISSN号:1002-0411
  • 期刊名称:信息与控制
  • 时间:0
  • 页码:214-220
  • 分类:O221.6[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]南京理工大学自动化学院,江苏南京210094
  • 相关基金:国家自然科学基金资助项目(60975075); 教育部高校博士点基金资助项目(20070288022); 江苏省自然科学基金资助项目(BK2008404).
  • 相关项目:受基底神经节启发的机器人行为选择与行为学习研究
中文摘要:

为了能够找到更多真实的Pareto最优解和提高所求最优解的分布均匀性,提出了一种新型的基于量子行为特性粒子群优化和自适应网格的多目标量子粒子群优化算法.利用量子行为特性粒子群优化算法的寻优优势快速地接近真实的Pareto最优解,引入高斯变异算子增强搜索解的多样性.通过设置一个外部存储器保留搜索过程中找到的Pareto最优解,采用自适应网格法对外部存储器中最优解进行更新和维护操作,使得从中选择的领导粒子能够引导粒子群最终找到真实的Pareto最优解.仿真结果表明所提算法具有更好的收敛性能和更均匀的分布性能.

英文摘要:

In order to find more true Pareto optimal solutions and improve their uniformity of distribution,a multi-objective quantum particle swarm optimization algorithm based on quantum-behaved particle swarm optimization(QPSO) and adaptive grid(MOQPSO) is proposed.MOQPSO makes full use of the superiority of quantum-behaved particle swarm optimization to approximate the true Pareto optimal solutions quickly,and Gaussian mutation operator is introduced to enhance the diversity of searched solutions.MOQPSO reserves the found Pareto optimal solutions by setting an external memory,and then updates and maintains the optimal solutions based on adaptive grid,in order to guide the particle swarm finding the true Pareto optimal solutions finally by the leader particles from external memory.Simulation results denote that MOQPSO is of better convergence and more uniform distributing performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960