位置:成果数据库 > 期刊 > 期刊详情页
基于多分类器集成的语音情感识别
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TN911.2[电子电信—通信与信息系统;电子电信—信息与通信工程] TN912.34[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]湖南工学院电气与信息工程学院,湖南衡阳421002, [2]湖南工学院信号与信息处理重点实验室,湖南衡阳421002, [3]台州学院物理与电子工程学院,浙江临海317000
  • 相关基金:国家自然科学基金项目(61203257);湖南省教育厅资助项目(10c0578)
中文摘要:

为了提高语音情感的正确识别率,提出一种基于多分类器集成的语音情感识别新算法.首先提取情感语音的韵律特征、音质特征和MFCC特征参数,然后将贝叶斯网络、K近邻法和径向基神经网络三种分类器构成集成分类器,实现对Berlin情感语言数据库中愤怒、欢乐、悲伤、中性、恐惧、无聊和厌恶7种主要情感类型的识别.实验结果表明,集成分类器对语音情感的识别取得了71.4019%的平均正确识别率,识别效果优于单一分类器.

英文摘要:

A new method of speech emotion recognition via integration of multiple classifiers is proposed for improving speech emotion classification rate. Based on extracting prosody, voice quality and MFCC feature parameters from emotional speech, three kinds of classifiers including Bayes. net, K-Nearest Neighborhood (KNN) and Radial Basis Function (RBF) neural network are utilized to construct an ensemble classifier so as to realize recognizing the seven main speech emotion in Berlin emotional speech database like anger, i oy, sadness and neutral, fear, bore and disgust. Computer simulation results show that the ensemble classifier can achieve average correct rate of 71. 4019 % for speech emotion classification, which is superior to the single classifier.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909