位置:成果数据库 > 期刊 > 期刊详情页
黏弹性问题的改进的复变量无单元Galerkin方法
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:O551.3[理学—热学与物质分子运动论;理学—物理] O343[理学—固体力学;理学—力学]
  • 作者机构:[1]Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China, [2]Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant No. 11171208), the Shanghai Leading Academic Discipline Project, China (Grant No. s30106), and the Innovation Fund for Graduate Student of Shanghai University of China (Grant No. SHUCX120125).
中文摘要:

<正>In this paper,based on the improved complex variable moving least-square(ICVMLS) approximation,a new complex variable meshless method(CVMM) for two-dimensional(2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations,and the essential boundary conditions are imposed by the penalty method.As the transient heat conduction problems are related to time,the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization.Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained.In order to demonstrate the applicability of the proposed method,numerical examples are given to show the high convergence rate,good accuracy,and high efficiency of the CVMM presented in this paper.

英文摘要:

In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.

同期刊论文项目
期刊论文 50 会议论文 9 获奖 2 著作 2
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876